注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

纷纷红紫已成尘·布谷声中夏令新

山西财院78jitong 19781017--19820715

 
 
 

日志

 
 
关于我

78jitong.......................................................... 高三李五七弓长,三赵九刘七大王,阎吴谢孙崔氏双,柴米余侯箩万堂, 毛邓陈宋任申杭,曾肖徐翁程董梁,储曲祁解韦国强,男女七十学跟党。

网易考拉推荐

2017年5月16日  

2017-05-16 09:15:55|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
2017年5月日 - 78jitong - 春天在哪里......
New research has found that the distribution of mass in galaxy clusters can be explained by dark matter that's both fuzzy and in excited states (Credit: richter1910/Depositphotos)

Galaxies appear to be full of fuzzy, excited dark matter

Michael Irving
 Michael Irving  April 30, 2017

Even though it's suspected of making up about 85 percent of the matter in the observable universe, dark matter is a mysterious beast. It's effectively invisible and can only be detected through its interactions with ordinary matter, but that hasn't stopped scientists from trying to understand just what it is and how it behaves. Now, using data gathered from NASA's Chandra X-ray Observatory, astronomers have found that the best way to explain how matter clumps together in galaxies is with a model of dark matter that's both fuzzy and excited.

Dark matter gets its name from the fact that it doesn't interact with light at all, which renders it invisible to us. In fact, we only know (or at least, strongly suspect) that it exists because its gravity affects the visible parts of the cosmos, and it conveniently plugs a few other holes in our understanding of the universe. Past research has suggested that it forms"hairs" around planets, connects galaxy clusters in filaments, and couldplay a key role in Earth's mass extinction cycle.

The most commonly accepted theory says that dark matter is "cold", which means that its particles move much slower than the speed of light. This theory is useful because it helps explain how the universe became so "lumpy." Shortly after the Big Bang, the universe is thought to have been relatively smooth, with matter distributed fairly evenly, but today it tends to clump together into galaxies and clusters of galaxies. If dark matter is cold, then as the universe expanded, pockets of it slowed down and eventually recollapsed, creating more dense sections. Ordinary (or baryonic) matter is attracted to dark matter so it will tend to gather in these areas as well, creating galaxies as we know them.

But handy as it is for explaining the structure of the universe on an intergalactic scale, the cold dark matter theory falls apart when it's applied to how matter is distributed inside a given galaxy. According to the theory, both dark and regular matter should be most dense right in the center of a galaxy, but observations show that isn't the case. Instead, it tends to spread out more evenly.

2017年5月日 - 78jitong - 春天在哪里......

Fuzzy dark matter, on the other hand, helps solve that problem. For this work, the researchers assumed that dark matter is made up of extremely light particles, with a mass about ten thousand trillion trillion times smaller than that of an electron. If this is the case, the particle's wavelength of light would be about 3,000 light-years long, meaning if you could see these particles, they would appear very fuzzy – hence the name.

The theory of fuzzy dark matter itself comes in two flavors: in the more simple version, all particles have the lowest possible energy, but a more complex version says that the particles can have different amounts of energy, called "excited states."

For this study, the astronomers applied both models to 13 galaxy clusters, to test how well the theories explained what was observed. Based on data gathered by Chandra, the team estimated how much dark matter would be present in each cluster, and how it's spread out from the center. Based on that data, the researchers concluded that the more simple model doesn't work, but the excited states model does agree with observations, in some cases even better than the standard cold dark matter idea.

While the researchers are encouraged by their findings, they point out that more work needs to be done to properly test the model. In particular, they say that the excited states should produce ripples that can be detected in the density of normal matter, and spotting this effect would help confirm the theory.

The research was published in the Monthly Notices of the Royal Astronomical Society.

 
  评论这张
 
阅读(4)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017