注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

纷纷红紫已成尘·布谷声中夏令新

山西财院78jitong 19781017--19820715

 
 
 

日志

 
 
关于我

78jitong.......................................................... 高三李五七弓长,三赵九刘七大王,阎吴谢孙崔氏双,柴米余侯箩万堂, 毛邓陈宋任申杭,曾肖徐翁程董梁,储曲祁解韦国强,男女七十学跟党。

网易考拉推荐

2016年7月27日  

2016-07-27 07:47:30|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
2016年7月日 - 78jitong - 夏天来了.....

What's Damming Data Lakes? Insights from Tableau, Qlik and Logi Analytics

Data lakes are used to store data in its natural format. Data experts can then test data relations without committing to a structure. It's a flexible data storage strategy for combining structured and unstructured data, and is best used as a sandbox alongside a data warehouse.

So, What's Damming Data Lakes?

The promise of combining unstructured and structured data in one place is alluring, but this leads to one very serious dilemma. 

When too much data is dumped into a data lake it risks becoming a data swamp instead. This term was coined by Michael Stonebraker to describe the murkiness of data curation. If the data isn't curated before analysis, it's impossible to gain valuable insights. Curation requires meticulous detail within these four steps:

  1. Ingestation
  2. Transformation
  3. Cleansing
  4. Consolidation

While investigating the growth of the data lake phenomenon, we were able to hear from experts within Tableau, Logi Analytics and Qlik. We've also included an opinion from Gartner in light of this 2016 business intelligence trend.

What's Damming Data Lakes? How they work, the curation process, and what the experts have to say.

 
  评论这张
 
阅读(6)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017